Nonlinear fiber optics /

Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical fi...

Full description

Saved in:
Bibliographic Details
Main Authors: Agrawal, G. P. Govind P., 1951
Corporate Authors: Elsevier Science & Technology
Published: Academic,
Publisher Address: Oxford :
Publication Dates: 2013.
Literature type: eBook
Language: English
Edition: Fifth edition.
Subjects:
Online Access: http://www.sciencedirect.com/science/book/9780123970237
Summary: Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects- Which offers a reduction in noise and power consumption, and more ordered network traffic- stimulated Brillouin scattering, vectorial treatment of highly nonlinear fibers, and a brand
Carrier Form: 1 online resource (xx, 629 pages)
Bibliography: Includes bibliographical references and index.
ISBN: 9780123973078
0123973074
Index Number: QC448
CLC: TN25
Contents: Machine generated contents note: ch. 1 Introduction -- 1.1. Historical Perspective -- 1.2. Fiber Characteristics -- 1.2.1. Material and Fabrication -- 1.2.2. Fiber Losses -- 1.2.3. Chromatic Dispersion -- 1.2.4. Polarization-Mode Dispersion -- 1.3. Fiber Nonlinearities -- 1.3.1. Nonlinear Refraction -- 1.3.2. Stimulated Inelastic Scattering -- 1.3.3. Importance of Nonlinear Effects -- 1.4. Overview -- Problems -- References -- ch. 2 Pulse Propagation in Fibers -- 2.1. Maxwell's Equations -- 2.2. Fiber Modes -- 2.2.1. Eigenvalue Equation -- 2.2.2. Single-Mode Condition -- 2.2.3. Characteristi
Note continued: 3.1. Different Propagation Regimes -- 3.2. Dispersion-Induced Pulse Broadening -- 3.2.1. Gaussian Pulses -- 3.2.2. Chirped Gaussian Pulses -- 3.2.3. Hyperbolic-Secant Pulses -- 3.2.4. Super-Gaussian Pulses -- 3.2.5. Experimental Results -- 3.3. Third-Order Dispersion -- 3.3.1. Evolution of Chirped Gaussian Pulses -- 3.3.2. Broadening Factor -- 3.3.3. Arbitrary-Shape Pulses -- 3.3.4. Ultrashort-Pulse Measurements -- 3.4. Dispersion Management -- 3.4.1. GVD-Induced Limitations -- 3.4.2. Dispersion Compensation -- 3.4.3.Compensation of Third-Order Dispersion -- Problems -- Refer
Note continued: 4.2.5. Effect of Third-Order Dispersion -- 4.2.6. SPM Effects in Fiber Amplifiers -- 4.3. Semianalytic Techniques -- 4.3.1. Moment Method -- 4.3.2. Variational Method -- 4.3.3. Specific Analytic Solutions -- 4.4. Higher-Order Nonlinear Effects -- 4.4.1. Self-Steepening -- 4.4.2. Effect of GVD on Optical Shocks -- 4.4.3. Intrapulse Raman Scattering -- Problems -- References -- ch. 5 Optical Solitons -- 5.1. Modulation Instability -- 5.1.1. Linear Stability Analysis -- 5.1.2. Gain Spectrum -- 5.1.3. Experimental Results -- 5.1.4. Ultrashort Pulse Generation -- 5.1.5. Impact on
Note continued: 5.4.1. Perturbation Methods -- 5.4.2. Fiber Losses -- 5.4.3. Soliton Amplification -- 5.4.4. Soliton Interaction -- 5.5. Higher-Order Effects -- 5.5.1. Moment Equations for Pulse Parameters -- 5.5.2. Third-Order Dispersion -- 5.5.3. Self-Steepening -- 5.5.4. Intrapulse Raman Scattering -- 5.5.5. Propagation of Femtosecond Pulses -- Problems -- References -- ch. 6 Polarization Effects -- 6.1. Nonlinear Birefringence -- 6.1.1. Origin of Nonlinear Birefringence -- 6.1.2. Coupled-Mode Equations -- 6.1.3. Elliptically Birefringent Fibers -- 6.2. Nonlinear Phase Shift -- 6.2.1. Non
Note continued: 6.5. Birefringence and Solitons -- 6.5.1. Low-Birefringence Fibers -- 6.5.2. High-Birefringence Fibers -- 6.5.3. Soliton-Dragging Logic Gates -- 6.5.4. Vector Solitons -- 6.6. Random Birefringence -- 6.6.1. Polarization-Mode Dispersion -- 6.6.2. Vector Form of the NLS Equation -- 6.6.3. Effects of PMD on Solitons -- Problems -- References -- ch. 7 Cross-Phase Modulation -- 7.1. XPM-Induced Nonlinear Coupling -- 7.1.1. Nonlinear Refractive Index -- 7.1.2. Coupled NLS Equations -- 7.2. XPM-Induced Modulation Instability -- 7.2.1. Linear Stability Analysis -- 7.2.2. Experimental
Note continued: 7.5.2. XPM-Induced Optical Switching -- 7.5.3. XPM-Induced Nonreciprocity -- 7.6. Polarization Effects -- 7.6.1. Vector Theory of XPM -- 7.6.2. Polarization Evolution -- 7.6.3. Polarization-Dependent Spectral Broadening -- 7.6.4. Pulse Trapping and Compression -- 7.6.5. XPM-Induced Wave Breaking -- 7.7. XPM Effects in Birefringent Fibers -- 7.7.1. Fibers with Low Birefringence -- 7.7.2. Fibers with High Birefringence -- Problems -- References -- ch. 8 Stimulated Raman Scattering -- 8.1. Basic Concepts -- 8.1.1. Raman-Gain Spectrum -- 8.1.2. Raman Threshold -- 8.1.3. Coupled A
Note continued: 8.3.5. Experimental Results -- 8.3.6. Synchronously Pumped Raman Lasers -- 8.3.7. Short-Pulse Raman Amplification -- 8.4. Soliton Effects -- 8.4.1. Raman Solitons -- 8.4.2. Raman Soliton Lasers -- 8.4.3. Soliton-Effect Pulse Compression -- 8.5. Polarization Effects -- 8.5.1. Vector Theory of Raman Amplification -- 8.5.2. PMD Effects on Raman Amplification -- Problems -- References -- ch. 9 Stimulated Brillouin Scattering -- 9.1. Basic Concepts -- 9.1.1. Physical Process -- 9.1.2. Brillouin-Gain Spectrum -- 9.2. Quasi-CW SBS -- 9.2.1. Brillouin Threshold -- 9.2.2. Polarization
Note continued: 9.5. Brillouin-Fiber Lasers -- 9.5.1. CW Operation -- 9.5.2. Pulsed Operation -- Problems -- References -- ch. 10 Four-Wave Mixing -- 10.1. Origin of Four-Wave Mixing -- 10.2. Theory of Four-Wave Mixing -- 10.2.1. Coupled Amplitude Equations -- 10.2.2. Approximate Solution -- 10.2.3. Effect of Phase Matching -- 10.2.4. Ultrafast Four-Wave Mixing -- 10.3. Phase-Matching Techniques -- 10.3.1. Physical Mechanisms -- 10.3.2. Phase Matching in Multimode Fibers -- 10.3.3. Phase Matching in Single-Mode Fibers -- 10.3.4. Phase Matching in Birefringent Fibers -- 10.4. Parametric Ampli
Note continued: 10.5.4. Effect of Residual Fiber Birefringence -- 10.6. Applications of Four-Wave Mixing -- 10.6.1. Parametric Oscillators -- 10.6.2. Ultrafast Signal Processing -- 10.6.3. Quantum Correlation and Noise Squeezing -- 10.6.4. Phase-Sensitive Amplification -- Problems -- References -- ch. 11 Highly Nonlinear Fibers -- 11.1. Nonlinear Parameter -- 11.1.1. Units and Values of n2 -- 11.1.2. SPM-Based Techniques -- 11.1.3. XPM-Based Technique -- 11.1.4. FWM-Based Technique -- 11.1.5. Variations in n2 Values -- 11.2. Fibers with Silica Cladding -- 11.3. Tapered Fibers with Air Claddi
Note continued: 11.6.2. Frequency-Dependent Mode Profiles -- Problems -- References -- ch. 12 Novel Nonlinear Phenomena -- 12.1. Soliton Fission and Dispersive Waves -- 12.1.1. Fission of Second- and Higher-Order Solitons -- 12.1.2. Generation of Dispersive Waves -- 12.2. Intrapulse Raman Scattering -- 12.2.1. Enhanced RIFS Through Soliton Fission -- 12.2.2. Cross-correlation Technique -- 12.2.3. Wavelength Tuning through RIFS -- 12.2.4. Effects of Birefringence -- 12.2.5. Suppression of Raman-Induced Frequency Shifts -- 12.2.6. Soliton Dynamics Near a Zero-Dispersion Wavelength -- 12.2.7. M
Note continued: 12.5. Third-Harmonic Generation -- 12.5.1. THG in Highly Nonlinear Fibers -- 12.5.2. Effects of Group-Velocity Mismatch -- 12.5.3. Effects of Fiber Birefringence -- Problems -- References -- ch. 13 Supercontinuum Generation -- 13.1. Pumping with Picosecond Pulses -- 13.1.1. Nonlinear Mechanisms -- 13.1.2. Experimental Progress After 2000 -- 13.2. Pumping with Femtosecond Pulses -- 13.2.1. Microstructured Silica Fibers -- 13.2.2. Microstructured Nonsilica Fibers -- 13.3. Temporal and Spectral Evolutions -- 13.3.1. Numerical Modeling of Supercontinuum -- 13.3.2. Role of Cross-P
Note continued: 13.6.1. Spectral-Domain Degree of Coherence -- 13.6.2. Techniques for Improving Coherence -- 13.6.3. Spectral Incoherent Solitons -- 13.7. Optical Rogue Waves -- 13.7.1.L-Shaped Statistics of Pulse-to-Pulse Fluctuations -- 13.7.2. Techniques for Controlling Rogue-Wave Statistics -- 13.7.3. Modulation Instability Revisited -- Problems -- References.