Materials and reliability handbook for semiconductor optical and electron devices /

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and...

Full description

Saved in:
Bibliographic Details
Corporate Authors: SpringerLink (Online service)
Group Author: Ueda, Osamu.; Pearton, S. J.
Published: Springer,
Publisher Address: New York, NY :
Publication Dates: 2013.
Literature type: eBook
Language: English
Subjects:
Online Access: http://dx.doi.org/10.1007/978-1-4614-4337-7
Summary: Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.Provides the first handbook to cover all aspects of compound semiconductor device reliabilitySystematically describes research results on reliability and materials issues of both optical and electron devices developed since 2000Covers characterization techniques needed to understand failure mechanisms in compound semiconductor devicesIncludes experimental approaches in reliability studiesPresents case studies of laser degradation and HEMT degradation
Item Description: Includes index.
Carrier Form: 1 online resource
ISBN: 9781461443377 (electronic bk.)
1461443377 (electronic bk.)
Index Number: TK7871
CLC: TN304-62
Contents: Materials Issues and Reliability of Optical Devices --
Reliability Testing of Semiconductor Optical Devices /
Failure Analysis of Semiconductor Optical Devices /
Failure Analysis Using Optical Evaluation Technique (OBIC) of LDs and APDs for Fiber Optical Communication /
Reliability and Degradation of III-V Optical Devices Focusing on Gradual Degradation /
Catastrophic Optical Damage in High-Power, Broad-Area Laser Diodes /
Reliability and Degradation of Vertical-Cavity Surface-Emitting Lasers /
Structural Defects in GaN-Based Materials and Their Relation to GaN-Based Laser Diodes /
InGaN Laser Diode Degradation /
Radiation-Enhanced Dislocation Glide: The Current Status of Research /
Mechanism of Defect Reactions in Semiconductors /
Materials Issues and Reliability of Electron Devices --
Reliability Studies in the Real World /
Strain Effects in AlGaN/GaN HEMTs /
Reliability Issues in AlGaN/GaN High Electron Mobility Transistors /
GaAs Device Reliability: High Electron Mobility Transistors and Heterojunction Bipolar Transistors /
Novel Dielectrics for GaN Device Passivation and Improved Reliability /
Reliability Simulation /
The Analysis of Wide Band Gap Semiconductors Using Raman Spectroscopy /
Reliability Study of InP-Based HBTs Operating at High Current Density /