The finite element method for solid and structural mechanics /

The Finite Element Method for Solid and Structural Mechanics is the key text and reference for engineers, researchers and senior students dealing with the analysis and modeling of structures, from large civil engineering projects such as dams to aircraft structures and small engineered components. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Zienkiewicz, O. C
Corporate Authors: Elsevier Science & Technology.
Group Author: Taylor, Robert L. (Robert Leroy), 1934-; Fox, David
Published: Butterworth-Heinemann,
Publisher Address: Oxford :
Publication Dates: 2014.
Literature type: eBook
Language: English
Edition: Seventh edition.
Subjects:
Online Access: http://www.sciencedirect.com/science/book/9781856176347
Summary: The Finite Element Method for Solid and Structural Mechanics is the key text and reference for engineers, researchers and senior students dealing with the analysis and modeling of structures, from large civil engineering projects such as dams to aircraft structures and small engineered components. This edition brings a thorough update and rearrangement of the book's content, including new chapters on: Material constitution using representative volume elements Differential geometry and calculus on manifolds Background mathematics and linear shell theory Focusing on the core knowledge, mathematical and analytical tools needed for successful structural analysis and modeling, The Finite Element Method for Solid and Structural Mechanics is the authoritative resource of choice for graduate level students, researchers and professional engineers. A proven keystone reference in the library of any engineer needing to apply the finite element method to solid mechanics and structural design. Founded by an influential pioneer in the field and updated in this seventh edition by an author team incorporating academic authority and industrial simulation experience. Features new chapters on topics including material constitution using representative volume elements, as well as consolidated and expanded sections on rod and shell models.
Carrier Form: 1 online resource (xxxi, 624 pages): illustrations
Bibliography: Includes bibliographical references and indexes.
ISBN: 9780080951362 (electronic bk.)
0080951368 (electronic bk.)
Index Number: QA808
CLC: TB12
Contents: Machine generated contents note: 1.1.Introduction -- 1.2.Small deformation solid mechanics problems -- 1.2.1.Strong form of equation: Indicial notation -- 1.2.2.Matrix notation -- 1.2.3.Two-dimensional problems -- 1.3.Variational forms for nonlinear elasticity -- 1.4.Weak forms of governing equations -- 1.4.1.Weak form for equilibrium equation -- 1.5.Concluding remarks -- References -- 2.1.Introduction -- 2.2.Finite element approximation: Galerkin method -- 2.2.1.Displacement approximation -- 2.2.2.Derivatives -- 2.2.3.Strain-displacement equations -- 2.2.4.Weak form -- 2.2.5.Irreducible displacement method -- 2.3.Numerical integration: Quadrature -- 2.3.1.Volume integrals -- 2.3.2.Surface integrals -- 2.4.Nonlinear transient and steady-state problems -- 2.4.1.Explicit Newmark method -- 2.4.2.Implicit Newmark method -- 2.4.3.Generalized midpoint implicit form -- 2.5.Boundary conditions: Nonlinear problems -- 2.5.1.Displacement condition -- 2.5.2.Traction condition -- 2.5.3.Mixed displacement/traction condition -- 2.6.Mixed or irreducible forms -- 2.6.1.Deviatoric and mean stress and strain components -- 2.6.2.A three-field mixed method for general constitutive models -- 2.6.3.Local approximation of p and u -- 2.6.4.Continuous u-p approximation -- 2.7.Nonlinear quasi-harmonic field problems -- 2.8.Typical examples of transient nonlinear calculations -- 2.8.1.Transient heat conduction -- 2.8.2.Structural dynamics -- 2.8.3.Earthquake response of soil structures -- 2.9.Concluding remarks -- References -- 3.1.Introduction -- 3.2.Iterative techniques -- 3.2.1.General remarks -- 3.2.2.Newton's method -- 3.2.3.Modified Newton's method -- 3.2.4.Incremental-secant or quasi-Newton methods -- 3.2.5.Line search procedures: Acceleration of convergence -- 3.2.6."Softening" behavior and displacement control -- 3.2.7.Convergence criteria -- 3.3.General remarks: Incremental and rate methods -- References -- 4.1.Introduction -- 4.2.Tensor to matrix representation -- 4.3.Viscoelastic
Note continued: 13.4.2.Variational form of the momentum balance equations -- 13.4.3.Consistent linearization: Tangent operator -- 13.5.Finite element formulation -- 13.5.1.Configuration and stress update algorithm -- 13.6.Numerical examples -- 13.6.1.Circular ring -- 13.6.2.Cantilever L-beam -- 13.6.3.Cantilever beam with co-linear end force and couple -- 13.7.Concluding remarks -- References -- 14.1.Introduction -- 14.2.Shell balance equations -- 14.2.1.Geometric description of the shell -- 14.2.2.Deformation, velocity fields, and linear and angular momenta -- 14.2.3.Shell momentum balance equations -- 14.2.4.Three-dimensional derivation and parameterized form of the shell balance equations -- 14.2.5.Balance of angular momentum and the effective stress resultants -- 14.2.6.Stress power and the shell strain measures -- 14.3.Conserved quantities and hyperelasticity -- 14.3.1.Conservation laws: Momentum maps -- 14.3.2.Hyperelastic constitutive equations -- 14.3.3.Hamiltonian formulation and conservation of energy -- 14.4.Weak form of the momentum balance equations -- 14.4.1.Variations and the weak form of the momentum equations -- 14.4.2.Momentum conservation and the weak form -- 14.4.3.Multiplicative decomposition of the director field and invariance under drill rotation -- 14.4.4.Component and matrix formulation of the weak form -- 14.5.Finite element formulation -- 14.5.1.Galerkin approximation: Element interpolations for the configuration and variations -- 14.5.2.Discrete weak form and matrix expressions -- 14.5.3.Interpolation and configuration updates -- 14.5.4.Linearization: Tangent operator -- 14.5.5.Treatment of membrane strain -- 14.5.6.Transverse shear treatment -- 14.6.Numerical examples -- 14.6.1.L-beam: Shell model -- 14.6.2.Pinched hemisphere -- 14.6.3.Buckling of skin-stringer panel -- 14.6.4.Car crash -- References -- 15.1.Introduction -- 15.2.Solution of nonlinear problems -- 15.3.Eigensolutions -- 15.4.Restart option -- 15.5.Concluding remarks --