Using Imperfect Semiconductor Systems for Unique Identification /

This thesis describes novel devices for the secure identification of objects or electronic systems. The identification relies on the the atomic-scale uniqueness of semiconductor devices by measuring a macroscopic quantum property of the system in question. Traditionally, objects and electronic syste...

Full description

Saved in:
Bibliographic Details
Main Authors: Roberts, Jonathan
Corporate Authors: SpringerLink Online service
Published: Springer International Publishing : Imprint: Springer,
Publisher Address: Cham :
Publication Dates: 2017.
Literature type: eBook
Language: English
Series: Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access: http://dx.doi.org/10.1007/978-3-319-67891-7
Summary: This thesis describes novel devices for the secure identification of objects or electronic systems. The identification relies on the the atomic-scale uniqueness of semiconductor devices by measuring a macroscopic quantum property of the system in question. Traditionally, objects and electronic systems have been securely identified by measuring specific characteristics: common examples include passwords, fingerprints used to identify a person or an electronic device, and holograms that can tag a given object to prove its authenticity. Unfortunately, modern technologies also make it possible t
Carrier Form: 1 online resource (XV, 123 pages): illustrations.
ISBN: 9783319678917
Index Number: QC610
CLC: O47
Contents: An Introduction to Security Based on Physical Disorder -- An Introduction to Semiconductors and Quantum Confinement -- Sample Preparation and Experimental Techniques -- Unique Identification with Resonant Tunneling Diodes -- Langmuir-Blodgett Deposition of 2D Materials for Unique Identification -- Building Optoelectronic Heterostructures with the Langmuir-Blodgett Technique -- Conclusions and Future Work.