Robust control engineering : practical QFT solutions /

Saved in:
Bibliographic Details
Main Authors: Garcia-Sanz, Mario (Author)
Published: CRC Press, Taylor & Francis Group,
Publisher Address: Boca Raton, FL :
Publication Dates: [2017]
Literature type: Book
Language: English
Subjects:
Carrier Form: xxi, 556 pages : illustrations ; 27 cm
Bibliography: Includes bibliographical references (pages 521-539) and index.
ISBN: 9781138032071
1138032077
Index Number: TJ216
CLC: TP273
TP271
Call Number: TP271/G216
Contents: Note continued: 3.Unstable Systems and Control Solutions -- 3.1.Introduction -- 3.2.Understanding Gain and Phase Margins, and Ws Circles -- 3.3.The NSC -- 3.4.Nyquist Stability Criterion in the Nichols Chart -- 3.5.Examples -- 3.6.Guidelines to Design Controllers -- 3.6.1.Parity Interlacing Property -- 3.6.2.Fundamental Theorem of Feedback Control -- 3.6.3.Examples -- 3.7.Analysis of the First Case -- 3.8.Summary -- 3.9.Practice -- 4.Time-Delay and Non-Minimum Phase Systems -- 4.1.Time-Delay Systems -- 4.2.Robust Design of the Smith Predictor -- 4.2.1.First Algorithm -- 4.2.2.Second Algorithm -- 4.3.Non-Minimum Phase Systems -- 4.3.1.Analysis -- 4.3.2.Control Methodology -- 4.4.Summary -- 4.5.Practice -- 5.Distributed Parameter Systems -- 5.1.Introduction -- 5.2.Modeling Approaches for PDE -- 5.3.Generalized DPS Control System Structure -- 5.4.Extension of QFT to DPS -- 5.5.Summary -- 5.6.Practice -- 6.Gain Scheduling/Switching Control Solutions -- 6.1.Introduction
Note continued: 6.2.System Stability Under Switching -- 6.3.Methodology -- 6.4.Examples -- 6.5.Summary -- 6.6.Practice -- 7.Nonlinear Dynamic Control -- 7.1.Introduction -- 7.2.The Circle Stability Criterion -- 7.3.Nonlinear Dynamic Control: One Nonlinearity -- 7.4.Anti-Windup Solution for PID Controllers -- 7.5.Nonlinear Dynamic Control: Several Nonlinearities -- 7.5.1.Describing Functions -- 7.5.2.Isolines -- 7.6.Summary -- 7.7.Practice -- 8.Multi-Input Multi-Output Systems: Analysis and Control -- 8.1.Introduction -- 8.2.Formulation for n x n Systems -- 8.3.MIMO Systems -- Description and Characteristics -- 8.3.1.Loop Coupling and Controller Structure -- 8.3.2.Interaction Analysis -- 8.3.3.Multivariable Poles and Zeros -- 8.3.4.Directionality -- 8.3.5.Gain and Phase -- 8.3.6.Effect of Poles and Zeros -- 8.3.7.Disturbance and Noise Signals -- 8.3.8.Uncertainty -- 8.3.9.Stability -- 8.4.MIMO QFT Control -- Overview -- 8.5.Non-Diagonal MIMO QFT -- Method 1
Note continued: 8.5.1.The Coupling Matrix -- 8.5.2.Tracking -- 8.5.3.Disturbance Rejection at Plant Input -- 8.5.4.Disturbance Rejection at Plant Output -- 8.5.5.The Coupling Elements -- 8.5.6.The Optimal Non-Diagonal Compensator -- 8.5.6.1.Tracking -- 8.5.6.2.Disturbance Rejection at Plant Input -- 8.5.6.3.Disturbance Rejection at Plant Output -- 8.5.7.The Coupling Effects -- 8.5.7.1.Tracking -- 8.5.7.2.Disturbance Rejection at Plant Input -- 8.5.7.3.Disturbance Rejection at Plant Output -- 8.5.8.Quality Function of the Designed Compensator -- 8.5.9.Design Methodology -- 8.5.10.Some Practical Issues -- 8.6.Non-Diagonal MIMO QFT -- Method 2 -- 8.6.1.Non-Diagonal MIMO QFT Reformulation -- 8.6.2.Case 1: Reference Tracking and Disturbance Rejection at Plant Output -- 8.6.2.1.Methodology -- 8.6.3.Case 2: Disturbance Rejection at Plant Input -- 8.6.4.Stability Conditions and Final Implementation -- 8.6.5.Translating Matrix Performance Specifications -- 8.6.5.1.Case n x n
Note continued: 8.6.5.2.Case 2 x 2 -- 8.7.Comparison of Methods 1 and 2 -- 8.8.Heat Exchanger, Example 8.1 -- MIMO QFT Method 1 -- 8.9.Heat Exchanger, Example 8.1 -- MIMO QFT Method 2 -- 8.10.Summary -- 8.11.Practice -- 9.Control Topologies -- 9.1.Introduction -- 9.2.Cascade Control Systems -- 9.2.1.Challenged -- 9.2.2.Solution 9.1: Cascade Control -- 9.3.Feedforward Control Systems -- 9.3.1.Challenged -- 9.3.2.Solution 9.2a: For Disturbance Rejection -- 9.3.3.Solution 9.2b: For Reference Tracking. Model Matching -- 9.3.4.Solution 9.2c: For Disturbance Rejection and Reference Tracking -- 9.4.Override Control Systems -- 9.4.1.Challenged -- 9.4.2.Solution 9.3: Override Control -- 9.5.Ratio Control Systems -- 9.5.1.Challenged -- 9.5.2.Solution 9.4: Ratio Control -- 9.6.Mid-Range Control Systems -- 9.6.1.Challenged -- 9.6.2.Solution 9.5: Mid-Range Control -- 9.7.Load-Sharing Control Systems -- 9.7.1.Challenged -- 9.7.2.Solution 9.6: Load-Sharing Control
Note continued: 9.8.Split-Range Control Systems -- 9.8.1.Challenged -- 9.8.2.Solution 9.7 Split-Range Control -- 9.9.Inferential Control Systems -- 9.9.1.Challenge 9.8 -- 9.9.2.Solution 9.8: Inferential Control -- 9.10.Auctioneering Control Systems -- 9.10.1.Challenged -- 9.10.2.Solution 9.9: Auctioneering Control -- 9.11.Summary -- 9.12.Practice -- 10.Controller Implementation -- 10.1.Introduction -- 10.2.Analog Implementation -- 10.3.Digital Implementation -- 10.3.1.Sample and Hold -- 10.3.2.Computer Control Algorithms -- 10.3.3.Positional and Velocity Algorithms -- 10.3.3.1.Positional Algorithm -- 10.3.3.2.Velocity Algorithm -- 10.3.4.Switching and Bumpless Algorithms -- 10.3.5.Pulse Width Modulation -- 10.4.Fragility Analysis with QFT -- 10.5.Summary -- 10.6.Practice -- Case Study 1 Satellite Control -- Case Study 2 Wind Turbine Control -- Case Study 3 Wastewater Treatment Plant Control -- Case Study 4 Radio-Telescope Control