Modern electric, hybrid electric, and fuel cell vehicles:fundamentals, theory, and design

Saved in:
Bibliographic Details
Main Authors: Ehsani Mehrdad.
Group Author: Emadi Ali.; Gao Yimin, 1957-
Published: CRC Press,
Publisher Address: Boca Raton
Publication Dates: c2010.
Literature type: Book
Language: English
Edition: 2nd ed.
Series: Power electronics and applications series
Subjects:
Carrier Form: xxii, 534 p.: ill. ; 25 cm.
ISBN: 9781420053982 (hardcover : alk. paper)
1420053981 (hardcover : alk. paper)
Index Number: U482
CLC: U482.3
U469.72
Call Number: U469.72/M689/2nd.ed.
Contents: Includes bibliographical references and index.
Preface -- Authors -- 1. Environmental impact and history of modern transportation -- 1.1. Air pollution -- 1.2. Global warming -- 1.3. Petroleum resources -- 1.4. Induced costs -- 1.5. Importance of different transportation development strategies to future oil supply -- 1.6. History of EVs -- 1.7. History of HEVs -- 1.8. History of fuel cell vehicles -- References -- 2. Fundamentals of vehicle propulsion and brake -- 2.1. General description of vehicle movement -- 2.2. Vehicle resistance -- 2.3. Dynamic equation -- 2.4. Tire-ground adhesion and maximum tractive effort -- 2.5. Power train tractive effort and vehicle speed -- 2.6. Vehicle power plant and transmission characteristics -- 2.7. Vehicle performance -- 2.8. Operating fuel economy -- 2.9. Brake performance -- References -- 3. Internal combustion engines -- 3.1. 4S, spark-ignited IC engines -- 3.2. 4S, compression-ignition IC engines -- 3.3. 2S engines -- 3.4. Wankel rotary engines -- 3.5. Stirling engines -- 3.6. Gas turbine engines -- 3.7. Quasi-isothermal Brayton cycle engines -- References -- 4. Electric vehicles -- 4.1. Configurations of EVs -- 4.2. Performance of EVs -- 4.3. Tractive effort in normal driving -- 4.4. Energy consumption -- References -- 5. Hybrid electric vehicles -- 5.1. Concept of hybrid electric drive trains -- 5.2. Architectures of hybrid electric drive trains -- References -- 6. Electric propulsion systems -- 6.1. DC motor drives -- 6.2. Inductive motor drives -- 6.3. Permanent magnetic BLDC motor drives -- 6.4. SRM drives -- References -- 7. Design principle of series (electrical coupling) hybrid electric drive train -- 7.1. Operation patterns -- 7.2. Control strategies -- 7.3. Design principles of a series (electrical coupling) hybrid drive train -- 7.4. Design example -- References -- 8. Parallel (mechanically coupled) hybrid electric drive train design -- 8.1. Drive train configuration and design objectives -- 8.2. Control strategies -- 8.3. Parametric design of a drive train -- 8.4. Simulations -- References -- 9. Design and control methodology of series-parallel (torque and speed coupling) hybrid drive train -- 9.1. Drive train configuration -- 9.2. Drive train control methodology -- 9.3. Drive train parameters design -- 9.4. Simulation of an example vehicle -- References -- 10. Design and control principles of plug-in hybrid electric vehicles -- 10.1. Statistics of daily driving distance -- 10.2. Energy management strategy -- 10.3. Energy storage design -- References -- 11. Mild hybrid electric drive train design -- 11.1. Energy consumed in braking and transmission -- 11.2. Parallel mild hybrid electric drive train -- 11.3. Series-parallel mild hybrid electric drive train -- References -- 12. Peaking power sources and energy storages -- 12.1. Electrochemical batteries -- 12.2. Ultracapacitors -- 12.3. Ultra-high-speed flywheels -- 12.4. Hybridization of energy storages -- References -- 13. Fundamentals of regenerative braking -- 13.1. Braking energy consumed in urban driving -- 13.2. Braking energy versus vehicle speed -- 13.3. Braking energy versus braking power -- 13.4. Braking power versus vehicle speed -- 13.5. Braking energy versus vehicle deceleration rate -- 13.6. Braking energy on front and rear axles -- 13.7. Brake system of EV, HEV, and FCV -- References -- 14. Fuel cells -- 14.1. Operating principles of fuel cells -- 14.2. Electrode potential and current-voltage curve -- 14.3. Fuel and oxidant consumption -- 14.4. Fuel cell system characteristics -- 14.5. Fuel cell technologies -- 14.6. Fuel supply -- 14.7. Non-hydrogen fuel cells -- References -- 15. Fuel cell hybrid electric drive train design -- 15.1. Configuration -- 15.2. Control strategy -- 15.3. Parametric design -- 15.4. Design example -- References -- 16. Design of series hybrid drive train for off-road vehicles -- 16.1. Motion resistance -- 16.2. Tracked series hybrid vehicle drive train architecture -- 16.3. Parametric design of the drive train -- 16.4. Engine/generator power design -- 16.5. Power and energy design of energy storage -- References -- Appendix. Technical overview of Toyota Prius -- A.1. Vehicle performance -- A.2. Overview of Prius hybrid power train and control systems -- A.3. Major components -- A.4. Hybrid system control modes -- Index.
"Air pollution, global warming, and the steady decrease in petroleum resources continue to stimulate interest in the development of safe, clean, and highly efficient transportation. Building on the foundation of the bestselling first edition, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition updates and expands its detailed coverage of the vehicle technologies that offer the most promising solutions to these issues affecting the automotive industry."--BOOK JACKET.