Scramjets : fuel mixing and injection systems /

Saved in:
Bibliographic Details
Main Authors: Gerdroodbary, Mostafa Barzegar (Author)
Published: Butterworth-Heinemann,
Publisher Address: Oxford :
Publication Dates: [2020]
Literature type: Book
Language: English
Subjects:
Carrier Form: vii, 219 pages : illustrations (some color), forms ; 23 cm
Bibliography: Includes bibliographical references and index.
ISBN: 9780128211380 (paperback) :
0128211385 (paperback) :
0128211407
9780128211403
CLC: V233
Call Number: V233/G366
Contents: Front Cover -- Scramjets -- Scramjets -- Copyright -- Contents -- 1 -- Introduction -- 1.1 Main structure of scramjets (Ramjet to supersonic combustion ramjet) -- 1.2 History of Scramjet -- 1.3 Compressible flow -- 1.3.1 Fundamental aspect of compressible flow -- References -- 2 -- Basic principle of supersonic combustion chamber -- 2.1 Governing equation -- 2.1.1 Mass conservation -- 2.1.2 Conservation of the momentum -- 2.1.3 Equation of the conservation energy -- 2.1.4 Conservation of the species -- 2.1.5 Equation state -- 2.1.6 The Fourier law for heat transfer -- 2.1.7 The shear stress
2.2 The shape of the combustion chamber -- 2.3 Main flow feature of combustion chamber -- 2.3.1 Shock-boundary layer interactions -- 2.4 Fuel types -- 2.5 Significant parameters and nondimensional numbers -- 2.5.1 Mixing rate -- 2.5.2 Total pressure recovery -- 2.5.3 Thermal performance (wall temperature) -- 2.5.4 Penetration -- 2.5.5 Streamwise vorticities -- 2.5.6 J-factor -- 2.5.7 Total pressure ratio -- 2.5.8 Jet to free stream dynamic pressure ratio -- References -- 3 -- Injection and mixing of single fuel jet in SCRAMJET engine -- 3.1 Transverse sonic porthole injection
3.1.1 Three-dimensional structure of the supersonic jet -- 3.1.2 Features of the barrel shock -- 3.1.3 Oil surface flow results -- 3.2 Cavity-based flameholding for chemically reacting supersonic flows -- 3.2.1 Nonreacting mechanism -- 3.2.1.1 Main feature of flow around the cavity -- 3.2.1.2 Flow oscillation inside the cavity -- 3.2.1.2.1 Cavity geometry -- 3.2.1.2.2 Shear layer in different cavity geometries -- 3.2.1.2.3 The impact of cavity geometry on the flow structure of the recirculation zone -- 3.2.1.2.4 Effect of cavity geometry on residence time -- 3.2.2 Fuel injection and mixing
3.2.2.1 Upstream injection -- 3.2.2.2 Injection from the floor of cavity -- 3.2.2.3 Parallel injection -- 3.2.3 Reacting flowfield -- 3.2.3.1 Upstream injection -- 3.2.3.2 Floor injection -- 3.2.3.3 Parallel injection -- 3.2.4 Stability of the flame -- 3.2.4.1 Cavity blowout limits -- 3.2.4.2 Transient behavior -- 3.3 Strut-equipped supersonic combustors -- 3.3.1 Mixing of fuel -- 3.3.2 The multistruts layout scheme on mixing efficiency -- References -- 4 -- Multi techniques for fuel injections -- 4.1 Transverse multi fuel-jets -- 4.1.1 Flow feature analysis -- 4.1.2 Dynamic pressure ratio
4.1.3 Total pressure recovery -- 4.1.4 Analysis of thermal performance -- 4.1.5 Analysis of thermal performance -- 4.1.6 Fuel penetration -- 4.1.7 Mixing -- 4.1.8 Drag reduction -- 4.1.9 Vorticities -- 4.2 Transverse air and fuel jet -- 4.2.1 Flow feature analysis -- 4.2.2 Mixing enhancement -- 4.2.3 Penetration -- 4.2.4 Circulation -- 4.3 Shock generator on the multimicrojets -- 4.3.1 Wedge shock flow -- 4.3.2 Sinusoidal shock generator -- 4.3.3 Upstream wavy profile -- 4.4 Multimicrojets in cavity flameholder -- 4.4.1 Multifuel jets -- 4.4.2 Micro-air jets -- 4.4.3 Shock generator