Progress in adhesion and adhesives. Volume 7 /

Saved in:
Bibliographic Details
Group Author: Mittal, K.L. (Editor)
Published: John Wiley & Sons, Inc.,
Publisher Address: Hoboken, NJ :
Publication Dates: 2024.
Literature type: Book
Language: English
Series: Adhesion and adhesives: fundamental and applied aspects
Subjects:
Carrier Form: xii, 394 pages : illustrations ; 24 cm.
Bibliography: Includes bibliographical references and index.
ISBN: 9781394198108
1394198108
Index Number: TP968
CLC: TQ43
Call Number: TQ43/P964/v.7
Contents: Preface -- 1 Stress Distribution and Design Analysis of Adhesively Bonded Tubular Composite Joints: A Review 1 Mohammad Shishesaz -- 1.1 Introduction -- 1.2 A Brief Review of Stress Analysis in Tubular Composite Joints -- 1.3 Governing Equations Based on Linear Elasticity -- 1.3.1 Typical Assumptions in a Tubular Lap Joint Under Torsion -- 1.3.2 Stress Distribution in a Defect-Free Tubular Lap Joint Under Torsion -- 1.3.3 Stress Distribution in Defect-Free Joints Under Bending Moment -- 1.3.4 Stress Distribution in Defect-Free Joints Under Axial Load -- 1.3.5 Design Aspects Related to Adhesive Layer -- 1.3.6 Stress Distribution in Damaged Joints Due to Voids, Debonds, or Delaminations -- 1.3.7 Stress Distribution in Hybrid Joints Under Torsion -- 1.4 Nonlinear Analysis and Stress Distribution in Tubular Composite Joints -- 1.5 Failure Analysis of Adhesive Layer -- 1.6 Summary -- 2 Durability of Structural Adhesive Joints: Factors Affecting Durability, Durability Assessment and Ways to Improve Durability 57 H. S. Panda, Srujan Sapkal and S. K. Panigrahi -- 2.1 Introduction -- 2.2 Factors Affecting Durability -- 2.2.1 Materials -- 2.2.1.1 Adhesives -- 2.2.2 Effects of Glass Transition Temperature (Tg) -- 2.2.2.1 Elastic Modulus -- 2.2.2.2 Lap-Shear Strength -- 2.2.3 Effects of Adherends -- 2.2.3.1 Aluminium -- 2.2.3.2 Steel -- 2.2.3.3 Titanium -- 2.2.4 Effects of Environment -- 2.2.4.1 Moisture -- 2.2.4.2 Coefficient of Thermal Expansion (CTE) -- 2.2.4.3 Stress -- 2.2.4.4 Temperature -- 2.2.5 Other Factors Affecting the Durability of Adhesive Joints -- 2.3 Durability Assessment -- 2.4 Methods to Improve Durability -- 2.4.1 Addition of Nano-Fillers -- 2.4.1.1 Carbon Nanofillers -- 2.4.1.2 Alumina-Based Nano-Fillers -- 2.4.1.3 Silica-Based Nano-Fillers -- 2.4.1.4 Other Nanofillers -- 2.5 Summary -- 3 Mechanical Surface Treatment of Adherends for Adhesive Bonding 113 Anna Rudawska -- 3.1 Introduction -- 3.2 Characteristics of Mechanical Surface Treatment Methods -- 3.2.1 Introduction -- 3.2.2 Processing with Coated Abrasive Tools -- 3.2.3 Abrasive Blasting -- 3.2.4 Shot Peening -- 3.2.5 Brushing -- 3.2.6 Milling -- 3.2.7 Grinding -- 3.3 Types of Abrasive Blasting Operations -- 3.3.1 Sandblasting -- 3.3.2 Shot Blasting -- 3.3.3 Grit-Blasting -- 3.3.4 Corundumizing -- 3.3.5 Glazing -- 3.3.6 Dry Ice Blasting -- 3.3.7 Soda Blasting -- 3.4 Influence of Mechanical Treatment on the Strength of Adhesive Joints -- 3.4.1 Processing with Abrasive Coated Tools -- 3.4.1.1 Mechanical Treatment Using Single and Multiple Abrasive Coated Tools -- 3.4.1.2 Surface Treatment with a Single Type of Abrasive Paper -- 3.4.2 Abrasive Blasting - Sandblasting -- 3.4.2.1 Influence of the Type of Abrasive Blasting on the Strength of Adhesive Joints: Sandblasting and Grit-Blasting -- 3.4.2.2 Influence of Abrasive Blasting Parameters on the Strength of Adhesive Joints -- 3.4.3 Abrasive Blasting - Shot Peening -- 3.4.3.1 Influence of Different Variants of Surface Treatment Methods Including Shot Peening on the Strength of Adhesive Joints -- 3.5 Summary -- 4 Surface Modification of Polymer Materials by Excimer 172 nm UV Light: A Review 171 Keiko Gotoh -- 4.1 Introduction -- 4.2 Wettability Measurements by Conventional Sessile Drop Technique -- 4.3 Preference for the Wilhelmy Technique in Wettability Analyses -- 4.4 UV Lithography Technique for Preparation of Mosaic Wettability Pattern -- 4.5 Chemical and Topographical Changes on Polymer Surfaces Due to UV Treatment -- 4.6 Determination of Surface Free Energy by Contact Angle Measurements -- 4.7 Effect of UV Treatment on Particle Adhesion -- 4.8 Improvement in Textile Performance by UV Treatment -- 4.9 Summary and Prospects -- 5 Corona Discharge Treatment for Surface Modification and Adhesion Improvement 203 Thomas Schuman -- 5.1 Introduction -- 5.2 Historical Development of Corona Treatment Technique and Various Set-Ups Available -- 5.3 Factors Affecting the Outcome of Corona Treatment -- 5.3.1 Corona Dosage -- 5.3.2 Electrode Gap -- 5.4 Effects Produced by Corona Treatment -- 5.5 Surface Analysis of Corona-Treated Materials -- 5.5.1 Contact Angle Measurements -- 5.5.2 Surface Free Energy Determination -- 5.5.3 X-Ray Photoelectron Spectroscopy (XPS) Analysis -- 5.5.4 Atomic Force Microscopy (AFM) Analysis -- 5.5.5 Adhesion Property -- 5.6 Summary -- 6 Adhesion Activation of Aramid Fibers for Industrial Use 225 Pieter J. de Lange, Peter G. Akker, Tony Mathew and Michel H.J. van den Tweel -- 6.1 Introduction -- 6.2 Adhesion Between Aramid Fibers and Rubber -- 6.2.1 Adhesion Activation Process -- 6.2.1.1 "Maturation" of the Adhesion Active Finish -- 6.2.1.2 Application and Curing -- 6.2.1.3 Resulting Chemical Surface Structure -- 6.2.1.4 Resulting Physical Surface Structure -- 6.2.2 RFL Dipping Process -- 6.2.2.1 Fiber-RFL Interface -- 6.2.2.2 RFL-Rubber Interface -- 6.3 Adhesion Between Aramid Fibers and Other Matrices -- 6.3.1 Thermoset Matrix -- 6.3.1.1 Micromechanical Testing -- 6.3.1.2 Macr