Filter synthesis using Genesys S/Filter /

Saved in:
Bibliographic Details
Main Authors: Rhea, Randall W
Published: Artech House,
Publisher Address: Boston :
Publication Dates: [2014]
Literature type: Book
Language: English
Series: Artech House microwave library
Subjects:
Item Description: Formerly CIP.
Carrier Form: xiv, 327 pages : illustrations (black and white) ; 24 cm.
Bibliography: Includes bibliographical references and index.
ISBN: 9781608078028 (hardback) :
1608078027 (hardback)
Index Number: TK7872
CLC: TN713.02
Call Number: TN713.02/R469
Contents: Machine generated contents note: 1.Transmission Zeros -- 1.1.Determining TZ by Inspection -- 1.2.Filter Degree -- 1.3.Canonical Realization -- 1.4.Influence of TZs on the Response -- References -- 2.All-Pole Lowpass and Highpass -- 2.1.Initial All-Pole Lowpass Parameters -- 2.2.Dual Topologies -- 2.3.Chebyshev Approximation with Even Order -- 2.4.All-Pole Highpass Example -- References -- 3.Lowpass with Finite Zeros -- 3.1.Introduction -- 3.2.Alternative Topologies -- 4.Conventional Bandpass -- 4.1.Bandpass Transform -- 4.2.Classification Symmetry or Antimetry -- 4.3.A 75- to 125-MHz Bandpas
Contents note continued: 7.2.Removing a Transformer with the Series Norton -- 7.3.Norton Shunt Transform -- 7.4.Equal-Valued Inductor Bandpass -- 7.5.The History Tab -- 7.6.Equate All Ls -- 8.Bandpass with Resonators -- 8.1.Coupled Parallel-Resonator Filters -- 8.1.1.Exact Design of a Parallel Resonator All-Pole Filter -- 8.1.2.Termination Coupling Transforms -- 8.1.3.Find Dual Transform -- 8.1.4.Exact Design with Like Coupling Elements -- 8.1.5.The Equate All Shunt Ls or Shorted Stubs Transform -- 8.1.6.Termination-Coupled Bandpass -- 8.2.Coupled Series-Resonator Filters -- 8.2.1.The Basic
Contents note continued: 9.2.2.The Convert Using Advanced Tline Routine -- 9.3.Generalized Bandpass Using Ceramic Resonators -- 9.3.1.Creating Parallel Resonators -- 9.3.2.Shifting the Internal Impedance Level -- 9.3.3.The Pi to Tee Transform: Increasing Coupling Caps -- 9.3.4.Converting the Parallel L-C to Coaxial Resonators -- 9.3.5.Optimizing the Values -- 9.4.Ceramic Bandpass with Two FTZs -- References -- 10.Piezoelectric Devices -- 10.1.Quartz-Crystal Device Model -- 10.1.1.Physical Form of the Quartz Crystal -- 10.1.2.Insertion Response of a Quartz Crystal -- 10.1.3.Modeling the Quart
Contents note continued: 10.7.Wide-Bandwidth Quartz-Crystal Filters -- 10.8.Very Wide-Bandwidth Quartz-Crystal Filters -- 10.9.Ceramic-Piezoelectric Resonators -- Reference -- 11.Symmetry -- 11.1.Physical Symmetry -- 11.1.1.A Lowpass Filter with FTZ Pairings -- 11.1.2.A Bandpass Filter with FTZ Pairings -- 11.2.Response Symmetry -- 11.2.1.All-Pole Symmetric Response Filters -- 11.2.2.Generalized Bandpass with Symmetric Response -- 11.2.3.Symmetry by FTZ Placement -- 11.3.Group-Delay Equalization -- References -- 12.Matching with S/Filter -- 12.1.Matching Concepts -- 12.1.1.Complex Conjugate
Contents note continued: 13.2.The Genesys Microwave Filter Module -- 13.3.Distributed Synthesis Concepts -- 13.3.1.TLEs -- 13.3.2.Richards Transform -- 13.3.3.Kuroda Identities -- 13.3.4.Ikeno Transforms -- 13.3.5.Kuroda-Minnis Transform -- 13.3.6.Half-Angle Transform -- 13.3.7.Interdigital Transform -- 13.3.8.Combline Transform -- 13.4.Lumped to Distributed Equivalent Transforms -- 13.5.Inverters -- 13.6.The Convert Using Advanced TLine Routine -- 13.7.Box Modes -- 13.8.Introduction to Distributed Filter Examples -- References -- 14.Distributed Lowpass Filters -- 14.1.Exact Methods -- 14.1.
Contents note continued: 14.5.Hybrid Lowpass -- 14.6.Distributed Lowpass Summary -- Reference -- 15.Distributed Bandstop Filters -- 15.1.All-Pole with Stubs and Contributing UEs -- 15.1.1.Wide Bandwidth Bandstop -- 15.1.2.Moderate Bandwidth Bandstop -- 15.1.3.Narrow Bandstop with Ikeno Transforms -- 15.2.Generalized Narrowband Bandstop -- 16.Distributed Bandpass Filters -- 16.1.Tutorials of Bandpass by Synthesis -- 16.1.1.Edge-Coupled Using Richards Transform -- 16.1.2.Edge-Coupled Using Inverters -- 16.1.3.Interdigital Using Inverters -- 16.2.Unique Bandpass Designs -- 16.2.1.Combline with
Contents note continued: 17.Distributed Highpass Filters -- 17.1.The Hybrid Highpass -- 17.1.1.The All-Pole Hybrid: Distributed Synthesis -- 17.1.2.The All-Pole Hybrid Highpass: Lumped Synthesis -- 17.1.3.The Hybrid Highpass with UEs -- 17.1.4.The Hybrid Highpass with an FTZ -- 17.2.Purely Distributed Highpass -- 17.2.1.Highpass with Three TZs at DC and a UE -- 17.2.2.Highpass with Three TZs at DC and Four UEs -- 17.3.The Highpass Synthesized as a Bandpass -- 17.3.1.Hybrid Highpass from an Eighth-Degree Bandpass -- 17.3.2.Hybrid Highpass from a 10th-Degree Bandpass -- 18.Multiplexers -- 18.1
Contents note continued: 19.1.3.The EMPro Program -- 19.2.Box Modes -- 19.3.EM Simulation of Distributed Circuits -- 19.3.1.EM Simulation of Penetrating Stepped-Z Lowpass -- 19.3.2.EM Simulation of a Combline Bandpass -- 19.3.3.EM Simulation of a Direct-Coupled Bandpass -- 19.4.Classic Method of Bandpass Design -- 19.4.1.Classic Method Fundamentals -- 19.4.2.Example: Determining K Values -- 19.4.3.Example: Determining Q Values -- 19.4.4.Filter Example Using the Classic Method -- References -- Appendix A Example Summary -- A.1.Lumped Examples -- A.2.Distributed Examples -- A.3.Hybrid Examples