Application of dimensional analysis in systems modelling and control design /

Saved in:
Bibliographic Details
Main Authors: Balaguer, Pedro (Author)
Published: Institution of Engineering and Technology
Publisher Address: Stevenage
Publication Dates: 2013.
Literature type: Book
Language: English
Series: IET control engineering series ; 90
Subjects:
Carrier Form: x, 142 pages : illustrations ; 24 cm.
Bibliography: Includes bibliographical references and index.
ISBN: 9781849196215 (cloth) :
1849196214 (cloth)
Index Number: TA347
CLC: TB2
Call Number: TB2/B171
Contents: Machine generated contents note: 1. Introduction -- 1.1. What is dimensional analysis? -- 1.2. What is dimensional similarity? -- 1.3. Application of dimensional analysis to science in general -- 1.3.1. Structure of physical relations -- 1.3.2. Dimensionless representation -- 1.3.3. Dimensional similarity -- 1.4. Application of dimensional analysis to control problems -- 1.4.1. Identification and model validation -- 1.4.2. Control theory -- 1.4.3. Control engineering -- 1.5. Book contents -- 2. Dimensional analysis and dimensional similarity -- 2.1. Physical quantities, units, and dimensions -- 2.1.1. Physical quantity -- 2.1.2. Units -- 2.1.3. Dimensions: fundamental and derived -- 2.1.4. Arithmetic of dimensions -- 2.2. Systems of units: dependence and independence of dimensions -- 2.2.1. System of units -- 2.2.2. Monomial power law -- 2.2.3. Dependent and independent dimensions -- 2.3. Buckingham pi theorem -- 2.4. Matrix approach for finding the dimensionless numbers -- 2.4.1. The dimensional matrix -- 2.4.2. The dimensional set -- 2.5. Dimensional similarity -- 2.5.1. Scale factors -- 2.5.2. Model law -- 2.6. Exercises -- References -- 3. Dynamical systems: dimensionless representation -- 3.1. Introduction -- 3.2. Transfer function dimensionless representation -- 3.2.1. Transfer function parameter dimensions -- 3.2.2. Transfer function parameters with independent dimensions -- 3.2.3. Transfer function dimensionless numbers -- 3.2.4. Dimensionless transfer function -- 3.3. State space dimensionless representation -- 3.3.1. Interpretation of the state space dimensionless transformation -- 3.4.Comparison between transfer function and state space dimensionless representation -- 3.5. Discrete time models dimensionless representation -- 3.5.1. Discrete time transfer function dimensionless representation -- 3.5.2. Discrete time state space model dimensionless representation -- 3.6. Exercises -- References -- 4. Dynamical systems: dimensional similarity -- 4.1. Introduction -- 4.2. Continuous time dynamical systems similarity -- 4.2.1. Transfer function dimensional similarity -- 4.2.2. State space dimensional similarity -- 4.3. Discrete time dynamical system similarity -- 4.3.1. Discrete time transfer function similarity -- 4.3.2. Sampled-data transfer function similarity -- 4.3.3. Discrete state space similarity -- 4.4. Exercises -- References -- 5. Dimensionless systems identification and model order reduction -- 5.1. Introduction -- 5.2. General procedure -- 5.3. Example 1: Second order inverse response model identification -- 5.3.1. Problem statement -- 5.3.2. Dimensionless representation of second order inverse response model -- 5.3.3. Identification procedure -- 5.3.4. Application examples -- 5.4. Example 2: Reduced effective transfer function reduction for PID decentralized control -- 5.4.1. Problem statement -- 5.4.2. Dimensionless representation of the reduced effective transfer function -- 5.4.3. Inverse response analysis -- 5.4.4. Reduced order model: general case -- 5.4.5. Reduced order model: particular cases -- 5.4.6. Application examples -- References -- 6. Homogeneity of PID tuning rules -- 6.1. Introduction -- 6.2. Homogeneous PID tuning rules -- 6.2.1. Dimensionless controller parameters -- 6.2.2. Homogeneous tuning rules characterization -- 6.2.3. Dimensionless controller representation with homogeneous tuning rules -- 6.3. Closed loop transfer functions -- 6.3.1. Loop transfer function GC -- 6.3.2. Dimensionless closed loop transfer functions -- 6.4. Optimality of homogeneous tuning rules -- 6.4.1. Weighting factors -- 6.5. Homogeneous and nonhomogeneous tuning rules -- References -- 7. Dimensionless PID tuning rules comparison -- 7.1. Introduction -- 7.2. Elements of the comparative framework -- 7.3. Dimensionless comparative framework -- 7.4. Dimensionless elements -- 7.4.1. Loop transfer function GC -- 7.4.2. Dimensionless closed loop transfer functions -- 7.4.3. Dimensionless integral errors -- 7.4.4. Indexes -- 7.5. Application example -- 7.5.1. PID tuning rules dimensionless characterization -- 7.5.2. Dimensionless sensitivity bandwidth comparison Wb -- 7.5.3. Dimensionless sensitivity peak comparison -- 7.5.4. Dimensionless integral absolute error -- 7.5.5. Dimensionless control action variation -- 7.6. PID tuning rules selection -- References -- 8. Control of dimensionally similar systems -- 8.1. Introduction -- 8.2. Control of dimensionally similar systems -- 8.3.Complete similarity -- 8.3.1. Continuous time control -- 8.3.2. Discrete time control -- 8.4. Partial similarity -- 8.5. Experimental case study -- References -- 9. Adaptive systems -- 9.1. Introduction -- 9.2. Actuator limitations and dimensionally similar model reference -- 9.2.1. Control effort -- 9.2.2. Similar model reference adaptive control -- 9.3. SMRAC for first order plants -- 9.4. SMRAC for arbitrary order plants -- 9.4.1. SMRAC control scheme -- 9.4.2. SMRAC stability analysis -- 9.4.3. SMRAC operation modes