Computational models for CO2 Geo-sequestration & compressed air energy storage /

"This book addresses two distinct, but related and highly important geoenvironmental applications: CO2 sequestration in underground formation, and Compressed Air Energy Storage (CAES). Sequestration of carbon dioxide in underground formations is considered an effective technique and a viable st...

Full description

Saved in:
Bibliographic Details
Group Author: Al-Khoury, Rafid (Editor); Bundschuh, Jochen (Editor)
Published: CRC Press,
Publisher Address: Boca Raton :
Publication Dates: [2014]
Literature type: Book
Language: English
Series: Sustainable energy developments ; volume 10
Subjects:
Summary: "This book addresses two distinct, but related and highly important geoenvironmental applications: CO2 sequestration in underground formation, and Compressed Air Energy Storage (CAES). Sequestration of carbon dioxide in underground formations is considered an effective technique and a viable strategy for the mitigation of global warming and climate change. However, the short-term and long-term consequences of such an operation might be catastrophic if the involved hydro-chemo-physical and mechanical processes at the regional level are not properly addressed. Compressed air energy storage is a relatively new field of geoenvironmental application, but gaining a lot of momentum due to its effective utilization for energy storage. Renewable energy sources, such as wind energy, can be efficiently stored in the form of a compressed air in underground formations at off-peak times, and re-utilized upon demand. However, pumping and releasing compressed air can cause hydromechanical effects on the region, causing subsidence, upheaving and minor earthquakes. Considering the great potentials of these two geoenvironmental applications and their consequences, it is vital to model the involved flow processes and develop numerical tools, which are capable of describing such processes in an accurate, stable and computationally efficient manner. This book aims at attaining such models and numerical tools."--
Carrier Form: xxxix, 531 pages : illustrations (some color) ; 26 cm.
Bibliography: Includes bibliographical references and index.
ISBN: 9781138015203 :
1138015202
Index Number: TD885
CLC: X511
P59
Call Number: P59/C738
Contents: Machine generated contents note: 1. Geological CO2 sequestration and compressed air energy storage -- An introduction / Rafid Al-Khoury -- 1.1. Atmospheric CO2 concentration and mitigation -- 1.2. Geological CO2 sequestration -- 1.2.1. Enhanced oil recovery -- 1.2.2. Unminable coal seam -- 1.2.3. Deep saline formation -- 1.3.Compressed air energy storage -- 1.3.1. Caes processes -- 1.3.1.1. Joule cycle -- 1.3.1.2. Ericsson cycle -- 1.3.2. Caes sites -- 1.3.2.1. Salt caverns -- 1.3.2.2. Porous rock caverns -- 1.3.2.3. Hard rock caverns -- 1.4.Computational modeling -- pt. I CO2 Geo-sequestration -- 2. On the theory of CO2 geo-sequestration / Rafid Al-Khoury -- 2.1. Introduction -- 2.2. Definitions -- 2.3. Averaging process -- 2.4. Modeling approach -- 2.4.1. Primary state variables -- 2.4.2. Derivation of mass balance equations -- 2.4.3. Derivation of constitutive equations -- 2.5. General balance equations -- 2.5.1. Two-phase flow medium domain -- 2.5.1.1. Linear momentum balance equation.
Contents note continued: 2.5.1.2. Mass balance equations -- 2.5.1.3. Energy balance equation -- 2.5.2. Single phase-two component flow medium -- 2.5.2.1. Single water phase (disappearance of CO2 phase) -- 2.5.2.2. Single CO2 phase (disappearance of water phase) -- 2.6. Balance equations for special cases -- 2.6.1. Non-isothermal flow with no diffusion and no mass exchange -- 2.6.1.1. Two phase- two component -- 2.6.1.2. Single water phase -- 2.6.1.3. Single CO2 phase -- 2.6.2. Isothermal flow with no diffusion and no mass exchange -- 2.6.2.1. Two phase-two component -- 2.6.2.2. Single water phase -- 2.6.2.3. Single CO2 phase -- 2.6.3. Isothermal rigid solid with no diffusion and no mass exchange -- 2.6.3.1. Two phase- two component -- 2.6.3.2. Single water phase -- 2.6.3.3. Single CO2 phase -- 2.7. Constitutive relationships -- 2.7.1. List of constitutive terms -- 2.7.2. Capillarity-saturation relationship -- 2.7.3. Relative permeability-saturation relationship -- 2.7.4. Dissolution rule.
Contents note continued: 2.7.4.1. Mass fraction, mole fraction, molality and molarity -- 2.7.4.2. Dissolution of water in CO2 phase -- 2.7.4.3. Dissolution of CO2 in water phase -- 2.7.5. Constitutive laws for CO2 phase -- 2.7.5.1. CO2 density -- 2.7.5.2. CO2 specific isobaric heat capacity -- 2.7.5.3. CO2 viscosity -- 2.7.6. Constitutive laws for water phase -- 2.7.6.1. Water density -- 2.7.6.2. Water specific isobaric heat capacity -- 2.7.6.3. Water viscosity -- 2.7.7. Summary of constitutive laws -- 2.8. Field equations -- 2.9. Conclusion -- pt. I.I Reactive transport modeling -- 3. Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Application to CO2 sequestration and enhanced geothermal energy using PFLOTRAN / Satish Karra -- 3.1. Introduction -- 3.2. Single continuum -- 3.2.1. Multiphase flow equations -- 3.2.1.1. Number of degrees of freedom -- 3.2.1.2. Mass and energy conservation equations -- 3.2.1.3. Phase transitions.
Contents note continued: 3.2.2. Multicomponent reactive transport equations -- 3.2.2.1. Chemical reaction network -- 3.2.2.2. Transport equations for homogeneous and heterogeneous reactions -- 3.2.2.3. Charge balance -- 3.2.2.4. Retardation -- 3.2.2.5. Coupling flow and transport equations -- 3.3. Multiple interacting continua -- 3.3.1. Geometry -- 3.3.2. Mass conservation equations -- 3.3.3. Energy conservation equation -- 3.3.4. Initial and boundary conditions -- 3.3.5. Limiting forms of the multiple continuum equations -- 3.4. Numerical implementation -- 3.4.1. Single continuum finite volume discretization -- 3.4.2. Multiple continuum discretization -- 3.5. Parallelization using the PETSc parallel framework -- 3.6. Single component system -- 3.6.1. Batch reactor -- 3.6.2. Stationary-state analytical solution -- 3.7. Applications -- 3.7.1. CO2 sequestration in a deep geologic formation -- 3.7.2. Modeling an EGS facility -- 3.7.2.1. Parallel scalability -- 3.7.2.2. Thermal retardation.
Contents note continued: 3.7.2.3.Comparison of H2O and CO2 as working fluids -- 3.7.2.4. Sustainability and efficiency of an EGS facility -- 3.8. Conclusion -- 4. Pore-network modeling of multi-component reactive transport under (variably- ) saturated conditions / Christopher J. Spiers -- 4.1. Introduction -- 4.2. Pore-network modeling -- 4.2.1. Coordination number distribution in MDPN -- 4.2.2. Simulating flow and transport within the pore network -- 4.2.2.1. Flow simulation -- 4.2.2.2. Solute transport (including advection and diffusion) -- 4.3. Well-bore cement degradation -- 4.3.1. Reactions and rate laws -- 4.3.1.1. Rationale for a simplified cement chemistry -- 4.3.1.2. Reaction kinetics and equilibria -- 4.3.2. Results and discussions -- 4.3.2.1. Cement carbonation and low pH solution attack -- 4.3.2.2. Carbonation progress -- 4.3.3. Porosity distribution and permeability evolution -- 4.3.3.1. Effect of topology of the pore network -- 4.3.4. Summary and conclusions.
Contents note continued: 4.4. Saturation dependent solute dispersivity -- 4.4.1. Dispersion in porous media -- 4.4.1.1. Dispersion under variably-saturated conditions -- 4.4.1.2. Experimental works and modeling studies -- 4.4.1.3. Objectives and computational features -- 4.4.2.Network generation -- 4.4.2.1. Pore size and coordination number distributions -- 4.4.2.2. Determination of the pore cross section and corner half angles -- 4.4.2.3. Pore space discretization -- 4.4.3. Modeling under variably-saturated conditions -- 4.4.3.1. Drainage simulation -- 4.4.3.2. Fluid flow within drained pores -- 4.4.3.3. Relative permeability -- 4.4.3.4. Simulating solute transport through the network -- 4.4.4. Results -- 4.4.4.1. Advection-dispersion equation (ADE) -- 4.4.4.2. Relative permeability -- 4.4.5. Conclusion -- 5. Reactive transport modeling issues of CO2 geological storage / Liange Zheng -- 5.1. Introduction -- 5.2. Model description -- 5.2.1. General features -- 5.2.2. Governing equations.
Contents note continued: 5.2.3. Solution method -- 5.3. Fate of injected CO2 -- 5.4. Impact on the groundwater quality -- 5.5. Modeling issues -- 5.6. Conclusions -- pt. I. II Numerical modeling -- 6. Role of computational science in geological storage of CO2 / Mary F. Wheeler -- 6.1. Introduction -- 6.2.Compositional flow model -- 6.2.1. EOS and flash implementation -- 6.2.2. Iterative IMPEC method -- 6.2.3. IMPEC implementation -- 6.3. Thermal energy equation -- 6.3.1. Time-split scheme -- 6.4. Geochemistry model -- 6.4.1. Reactive system -- 6.4.2. Reaction types -- 6.5. Petrophysical property model -- 6.5.1. Interfacial tension -- 6.5.2. Residual trapping model -- 6.5.3. Relative permeability -- 6.5.4. Capillary pressure -- 6.5.5. Hysteresis -- 6.6.Computational results -- 6.6.1. Benchmark leakage problem -- 6.6.2. Simulation of a laboratory coreflood -- 6.6.3. Cranfield demonstration pilot in Mississippi, USA -- 6.6.3.1. Cranfield site description.
Contents note continued: 6.6.3.2. Cranfield multiprocessor simulation results -- 6.6.3.3. Cranfield simulations using local grid refinement -- 6.7. Ensemble kalman filter history matching methodology -- 6.7.1. Ensemble Kalman filter -- 6.7.2. Ensemble smoother (ES) -- 6.7.3. Parameter estimation example -- 6.8. Summary and current extensions -- 7.A robust implicit pressure explicit mass method for multi-phase multi-component flow including capillary pressure and buoyancy / Jan M. Nordbotten -- 7.1. Introduction -- 7.2. Physical background -- 7.2.1. Physical equations -- 7.2.1.1. Single component phases -- 7.2.1.2. Multi-component phases -- 7.2.2. Reformulations for analytical and numerical treatment -- 7.2.2.1. Incompressible media -- 7.2.2.2.Compressible media -- 7.2.2.3. Multi-component phases -- 7.2.3. Typical material properties -- 7.2.3.1. Relative permeabilities -- 7.2.3.2. Capillary pressure -- 7.2.3.3. Material parameters -- 7.3. The impem algorithm -- 7.3.1.A relaxed volume approach.
Contents note continued: 7.3.2. Discretization of the pressure equation -- 7.3.2.1. Incompressible single-component phases -- 7.3.2.2.Compressible single-component phases -- 7.3.2.3. Multi-component phases -- 7.3.3. Discretization of the transport equations -- 7.3.3.1. Single-component phases -- 7.3.3.2. Multi-component phases -- 7.3.4. Capillary pressure -- 7.3.5. Relative permeabilities -- 7.3.6. Time step size for the pressure equation revisited -- 7.4. Motivation for the discretization -- 7.4.1. Treatment of mobilities in the pressure equation -- 7.4.2. Alternative transport formulations -- 7.4.3. Additional themes -- 7.5.Comparison of different approaches -- 7.5.1. Buckley-Leverett -- 7.5.2. Redistribution -- 7.5.3. Vertical cut through a homogeneous horizontal aquifer -- 7.5.3.1. Vertical initial CO2 column -- 7.5.3.2. Quadratic cross-shaped initial plume -- 7.6. Concluding remarks -- 8. Simulation of CO2 sequestration in brine aquifers with geomechanical coupling / Yu-Shu Wu.
Contents note continued: 8.1. Introduction -- 8.2. Simulator geomechanical equations -- 8.3. Simulator conservation equations -- 8.4. Discretization of single-porosity simulator conservation equations -- 8.4.1. Discretization of single-porosity geomechanical equations -- 8.4.2. Solution of simulator conservation equations -- 8.5. Multi-porosity flow model -- 8.6. Geomechanical boundary conditions -- 8.7. Rock property correlations -- 8.8. Fluid property modules -- 8.9. Example simulations -- 8.9.1. One-dimensional consolidation of double-porosity medium -- 8.9.2. Mandel-Cryer effect -- 8.9.3.Comparison of Tough2-CSM to a conventional reservoir simulator -- 8.9.4. In Salah Gas Project simulation -- 8.9.5. Ground deformation and heat flow in a caldera structure -- 8.10. Summary and conclusions -- 9. Model development for the numerical simulation of CO2 storage in naturally fractured saline aquifers / Celestin Zemtsop -- 9.1. Introduction -- 9.2. The single porosity problem.
Contents note continued: 9.2.1. Modeling assumptions -- 9.2.2. Governing equations -- 9.3. Homogenization -- 9.3.1. Microscopic model -- 9.3.2. Homogenization assumptions -- 9.3.3. Macroscopic model -- 9.3.4. Homogenized model -- 9.3.5. Double porosity model -- 9.3.6. Global pressure formulation -- 9.4. Thermodynamics -- 9.5. Numerical simulations and results -- 9.5.1. Code verification -- 9.5.2. CO2 injection -- 9.6. Conclusions -- 10. Coupled partition of unity-level set finite element formulation for CO2 geo-sequestration / Mojtaba Talebian -- 10.1. Introduction -- 10.2. Governing equations -- 10.2.1. Equilibrium equations -- 10.2.2. Mass continuity equations -- 10.2.3. Electric current density continuity equation -- 10.2.4. General field equations -- 10.2.4.1. Equilibrium field equation -- 10.2.4.2. Mass balance field equations -- 10.2.4.3. Electric current density balance field equations -- 10.2.4.4. Special case: Incompressible fluid and solid phases -- 10.2.5. Initial and boundary conditions.
Contents note continued: 10.3. Mixed discretization scheme -- 10.3.1. Tracing the front: Level-set discretization -- 10.3.2. Modeling the front: SG-XFEM discretization -- 10.3.3. Linearization -- 10.3.4. Time discretization -- 10.4. Verifications examples -- 10.4.1. Buckley-Leverett problem -- 10.4.2. McWhorter problem -- 10.4.3. Saturated consolidation -- 10.4.4. Electro-osmotic consolidation -- 10.5. Conclusions -- pt. I. III Aquifer optimization -- 11. Optimization and data assimilation for geological carbon storage / Louis J. Durlofsky -- 11.1. Introduction -- 11.2.A-priori optimization of well placement and control -- 11.2.1. Formulation of the optimization problem -- 11.2.2. Particle swarm optimization (PSO) technique -- 11.3. Data assimilation and sensor placement -- 11.3.1. Data assimilation procedure -- 11.3.2. Karhunen-Loeve representation of geological models -- 11.3.3. Generalized pattern search optimization -- 11.3.4. Data assimilation workflow.
Contents note continued: 11.3.5. Optimal sensor placement and data weighting -- 11.4. Aquifer model definition -- 11.5. Results -- a-priori well placement and control optimization -- 11.5.1. Optimization with known geology -- 11.5.2. Optimization with brine cycling -- 11.5.3. Optimization with uncertain geology -- 11.6. Results -- optimal sensor placement and data assimilation -- 11.7. Concluding remarks -- 12. Density-driven natural convection flow of CO2 in heterogeneous porous media / Johannes Bruining -- 12.1. Introduction -- 12.2. Density-driven flow in heterogeneous media -- 12.2.1. Physical model for density-driven flow in heterogeneous media -- 12.2.1.1. Formulation and governing equations -- 12.2.1.2. Dimensionless form of the equations -- 12.2.1.3. Boundary and initial conditions -- 12.2.1.4. Solution procedure -- 12.2.2. Interpretation of the results -- 12.2.2.1. Effective dispersion coefficient -- 12.2.2.2. Coefficient of variation, Cv -- 12.2.2.3. Koval heterogeneity index, Hk.
Contents note continued: 12.2.2.4. Heterogeneity index, IH -- 12.2.3. Generation of stochastic random fields -- 12.2.4. Results and discussion -- 12.2.4.1. Homogeneous porous media -- 12.2.4.2. Effect of heterogeneity -- 12.3. Analytical model for density-driven natural convection flow -- 12.3.1. Koval theory for miscible displacement -- 12.3.2. Formulation and governing equations -- 12.3.3. Dimensionless form of the equations -- 12.3.4. Solution of Equation (12.39) -- 12.3.5.Comparison of numerical and analytical solutions -- 12.4. Summary -- 12.5. Appendix 12a. Numerical solution of the equations -- pt. II Compressed air energy storage -- 13. An introduction to the compressed air energy storage / Lasse Nielsen -- 13.1. Introduction -- 13.2. Fundamentals of compressed air energy storages -- 13.2.1. General remarks -- 13.2.2. Isobaric and adiabatic compressed air storage -- simplified analytical solution for ideal gas and neglecting some losses.
Contents note continued: 13.2.3. Isochoric and adiabatic compressed air storage -- simplified analytical solution for ideal gas and neglecting some losses -- 13.2.4. Isothermal compression and isobaric compressed air storage with isothermal expansion and heat transfer -- 13.3. CAES-cycles -- operated and planned -- 13.3.1. Diabatic concept -- 13.3.2. Adiabatic concept -- 13.3.3. Isochoric compressed air storage with variable pressure -- 13.3.4. Isobaric compressed air storage with variable volume -- 13.4. Summary -- 14. Simulation of an isobaric adiabatic compressed air energy storage combined cycle / Reinhard Leithner -- 14.1. The Isacoast-cc concept -- 14.1.1. Basic cycle operations -- 14.1.2. Avoiding heat storage by direct use of the compression heat -- 14.1.3. Heat storage design -- 14.1.4. Long and short term energy storages -- 14.1.5. Storage dimensioning -- 14.2. Simulation models -- 14.2.1. Caverns -- 14.2.1.1. Nearly isobaric cavern -- 14.2.1.2. Isochoric cavern.
Contents note continued: 14.2.1.3. Validation of the cavern models -- 14.2.2. Thermal energy storage -- 14.2.2.1.0-dimensional thermal energy storage -- 14.2.2.2.1-dimensional solid thermal energy storage -- 14.2.2.3.2-tank fluid thermal energy storage -- 14.2.2.4. Thermocline heat storage -- 14.2.3. Turbo machinery -- 14.2.3.1.Compressor -- 14.2.3.2.Combustion chamber -- 14.2.3.3. Gas turbine -- 14.2.4. Steam cycle -- 14.3. Simulation results -- 14.3.1. Heat conduction in cavern walls -- 14.3.2. Gas turbine startup -- 14.3.3. Isacoast-CC storage process -- 14.3.3.1. Heat storage during charging and discharging operation -- 14.3.3.2. Turbo machinery and cavern during charging operation -- 14.3.3.3. Turbo machinery and cavern during discharging operation -- 14.4. Summary -- 15. Rigorous process simulation of compressed air energy storage (Caes) in porous media systems / Curtis M. Oldenburg -- 15.1. Introduction -- 15.2. Background -- 15.3. Methods -- 15.3.1. Introduction.
Contents note continued: 15.3.2. Solution framework -- 15.3.3. The momentum equations for flow in well and drift-flux model (DFM) -- 15.3.4. Numerical implementation -- 15.3.4.1. Solution of momentum equation in wellbore -- 15.3.4.2. Mass and energy flow through wellbore/reservoir interface -- 15.3.4.3. Primary variables for system with multiple non-water components -- 15.4. Example PM-CAES simulation -- 15.4.1.A note on time steps -- 15.5. Conclusions -- 16. Detailed system level simulation of compressed air energy storage / Mandhapati Raju -- 16.1. Introduction -- 16.2. Background -- 16.3. Caes plant operation -- 16.4.Component modeling -- 16.4.1.Compressor -- 16.4.1.1. Single stage compressor (no bleeds provided) -- 16.4.1.2. Multistage compressor (with bleeds) -- 16.4.2. Cavern Storage -- 16.4.3.Combustor -- 16.4.4. Turbine -- 16.5. Modeling Huntorf CAES plant: A case study -- 16.5.1. Evaluating heat transfer coefficients -- 16.5.2. Validation of the CAES model -- 16.6. Conclusions.