Computational models for CO2 Geo-sequestration & compressed air energy storage /

"This book addresses two distinct, but related and highly important geoenvironmental applications: CO2 sequestration in underground formation, and Compressed Air Energy Storage (CAES). Sequestration of carbon dioxide in underground formations is considered an effective technique and a viable st...

Full description

Saved in:
Bibliographic Details
Group Author: Al-Khoury, Rafid; Bundschuh, Jochen
Published: CRC Press,
Publisher Address: Boca Raton :
Publication Dates: [2014]
Literature type: Book
Language: English
Series: Sustainable energy developments ; volume 10
Subjects:
Summary: "This book addresses two distinct, but related and highly important geoenvironmental applications: CO2 sequestration in underground formation, and Compressed Air Energy Storage (CAES). Sequestration of carbon dioxide in underground formations is considered an effective technique and a viable strategy for the mitigation of global warming and climate change. However, the short-term and long-term consequences of such an operation might be catastrophic if the involved hydro-chemo-physical and mechanical processes at the regional level are not properly addressed. Compressed air energy storage is
Carrier Form: xxxix, 531 pages : illustrations (some color) ; 26 cm.
Bibliography: Includes bibliographical references and index.
ISBN: 9781138015203 :
1138015202
Index Number: TD885
CLC: X511
P59
Call Number: P59/C738
Contents: Machine generated contents note: 1. Geological CO2 sequestration and compressed air energy storage -- An introduction / Rafid Al-Khoury -- 1.1. Atmospheric CO2 concentration and mitigation -- 1.2. Geological CO2 sequestration -- 1.2.1. Enhanced oil recovery -- 1.2.2. Unminable coal seam -- 1.2.3. Deep saline formation -- 1.3.Compressed air energy storage -- 1.3.1. Caes processes -- 1.3.1.1. Joule cycle -- 1.3.1.2. Ericsson cycle -- 1.3.2. Caes sites -- 1.3.2.1. Salt caverns -- 1.3.2.2. Porous rock caverns -- 1.3.2.3. Hard rock caverns -- 1.4.Computational modeling -- pt. I CO2 Geo-sequestrat
Contents note continued: 2.5.1.2. Mass balance equations -- 2.5.1.3. Energy balance equation -- 2.5.2. Single phase-two component flow medium -- 2.5.2.1. Single water phase (disappearance of CO2 phase) -- 2.5.2.2. Single CO2 phase (disappearance of water phase) -- 2.6. Balance equations for special cases -- 2.6.1. Non-isothermal flow with no diffusion and no mass exchange -- 2.6.1.1. Two phase- two component -- 2.6.1.2. Single water phase -- 2.6.1.3. Single CO2 phase -- 2.6.2. Isothermal flow with no diffusion and no mass exchange -- 2.6.2.1. Two phase-two component -- 2.6.2.2. Single water
Contents note continued: 2.7.4.1. Mass fraction, mole fraction, molality and molarity -- 2.7.4.2. Dissolution of water in CO2 phase -- 2.7.4.3. Dissolution of CO2 in water phase -- 2.7.5. Constitutive laws for CO2 phase -- 2.7.5.1. CO2 density -- 2.7.5.2. CO2 specific isobaric heat capacity -- 2.7.5.3. CO2 viscosity -- 2.7.6. Constitutive laws for water phase -- 2.7.6.1. Water density -- 2.7.6.2. Water specific isobaric heat capacity -- 2.7.6.3. Water viscosity -- 2.7.7. Summary of constitutive laws -- 2.8. Field equations -- 2.9. Conclusion -- pt. I.I Reactive transport modeling -- 3. Model
Contents note continued: 3.2.2. Multicomponent reactive transport equations -- 3.2.2.1. Chemical reaction network -- 3.2.2.2. Transport equations for homogeneous and heterogeneous reactions -- 3.2.2.3. Charge balance -- 3.2.2.4. Retardation -- 3.2.2.5. Coupling flow and transport equations -- 3.3. Multiple interacting continua -- 3.3.1. Geometry -- 3.3.2. Mass conservation equations -- 3.3.3. Energy conservation equation -- 3.3.4. Initial and boundary conditions -- 3.3.5. Limiting forms of the multiple continuum equations -- 3.4. Numerical implementation -- 3.4.1. Single continuum finite vol
Contents note continued: 3.7.2.3.Comparison of H2O and CO2 as working fluids -- 3.7.2.4. Sustainability and efficiency of an EGS facility -- 3.8. Conclusion -- 4. Pore-network modeling of multi-component reactive transport under (variably- ) saturated conditions / Christopher J. Spiers -- 4.1. Introduction -- 4.2. Pore-network modeling -- 4.2.1. Coordination number distribution in MDPN -- 4.2.2. Simulating flow and transport within the pore network -- 4.2.2.1. Flow simulation -- 4.2.2.2. Solute transport (including advection and diffusion) -- 4.3. Well-bore cement degradation -- 4.3.1. React
Contents note continued: 4.4. Saturation dependent solute dispersivity -- 4.4.1. Dispersion in porous media -- 4.4.1.1. Dispersion under variably-saturated conditions -- 4.4.1.2. Experimental works and modeling studies -- 4.4.1.3. Objectives and computational features -- 4.4.2.Network generation -- 4.4.2.1. Pore size and coordination number distributions -- 4.4.2.2. Determination of the pore cross section and corner half angles -- 4.4.2.3. Pore space discretization -- 4.4.3. Modeling under variably-saturated conditions -- 4.4.3.1. Drainage simulation -- 4.4.3.2. Fluid flow within drained por
Contents note continued: 5.2.3. Solution method -- 5.3. Fate of injected CO2 -- 5.4. Impact on the groundwater quality -- 5.5. Modeling issues -- 5.6. Conclusions -- pt. I. II Numerical modeling -- 6. Role of computational science in geological storage of CO2 / Mary F. Wheeler -- 6.1. Introduction -- 6.2.Compositional flow model -- 6.2.1. EOS and flash implementation -- 6.2.2. Iterative IMPEC method -- 6.2.3. IMPEC implementation -- 6.3. Thermal energy equation -- 6.3.1. Time-split scheme -- 6.4. Geochemistry model -- 6.4.1. Reactive system -- 6.4.2. Reaction types -- 6.5. Petrophysical prop
Contents note continued: 6.6.3.2. Cranfield multiprocessor simulation results -- 6.6.3.3. Cranfield simulations using local grid refinement -- 6.7. Ensemble kalman filter history matching methodology -- 6.7.1. Ensemble Kalman filter -- 6.7.2. Ensemble smoother (ES) -- 6.7.3. Parameter estimation example -- 6.8. Summary and current extensions -- 7.A robust implicit pressure explicit mass method for multi-phase multi-component flow including capillary pressure and buoyancy / Jan M. Nordbotten -- 7.1. Introduction -- 7.2. Physical background -- 7.2.1. Physical equations -- 7.2.1.1. Single compo
Contents note continued: 7.3.2. Discretization of the pressure equation -- 7.3.2.1. Incompressible single-component phases -- 7.3.2.2.Compressible single-component phases -- 7.3.2.3. Multi-component phases -- 7.3.3. Discretization of the transport equations -- 7.3.3.1. Single-component phases -- 7.3.3.2. Multi-component phases -- 7.3.4. Capillary pressure -- 7.3.5. Relative permeabilities -- 7.3.6. Time step size for the pressure equation revisited -- 7.4. Motivation for the discretization -- 7.4.1. Treatment of mobilities in the pressure equation -- 7.4.2. Alternative transport formulations
Contents note continued: 8.1. Introduction -- 8.2. Simulator geomechanical equations -- 8.3. Simulator conservation equations -- 8.4. Discretization of single-porosity simulator conservation equations -- 8.4.1. Discretization of single-porosity geomechanical equations -- 8.4.2. Solution of simulator conservation equations -- 8.5. Multi-porosity flow model -- 8.6. Geomechanical boundary conditions -- 8.7. Rock property correlations -- 8.8. Fluid property modules -- 8.9. Example simulations -- 8.9.1. One-dimensional consolidation of double-porosity medium -- 8.9.2. Mandel-Cryer effect -- 8.9.3
Contents note continued: 9.2.1. Modeling assumptions -- 9.2.2. Governing equations -- 9.3. Homogenization -- 9.3.1. Microscopic model -- 9.3.2. Homogenization assumptions -- 9.3.3. Macroscopic model -- 9.3.4. Homogenized model -- 9.3.5. Double porosity model -- 9.3.6. Global pressure formulation -- 9.4. Thermodynamics -- 9.5. Numerical simulations and results -- 9.5.1. Code verification -- 9.5.2. CO2 injection -- 9.6. Conclusions -- 10. Coupled partition of unity-level set finite element formulation for CO2 geo-sequestration / Mojtaba Talebian -- 10.1. Introduction -- 10.2. Governing equatio
Contents note continued: 10.3. Mixed discretization scheme -- 10.3.1. Tracing the front: Level-set discretization -- 10.3.2. Modeling the front: SG-XFEM discretization -- 10.3.3. Linearization -- 10.3.4. Time discretization -- 10.4. Verifications examples -- 10.4.1. Buckley-Leverett problem -- 10.4.2. McWhorter problem -- 10.4.3. Saturated consolidation -- 10.4.4. Electro-osmotic consolidation -- 10.5. Conclusions -- pt. I. III Aquifer optimization -- 11. Optimization and data assimilation for geological carbon storage / Louis J. Durlofsky -- 11.1. Introduction -- 11.2.A-priori optimization
Contents note continued: 11.3.5. Optimal sensor placement and data weighting -- 11.4. Aquifer model definition -- 11.5. Results -- a-priori well placement and control optimization -- 11.5.1. Optimization with known geology -- 11.5.2. Optimization with brine cycling -- 11.5.3. Optimization with uncertain geology -- 11.6. Results -- optimal sensor placement and data assimilation -- 11.7. Concluding remarks -- 12. Density-driven natural convection flow of CO2 in heterogeneous porous media / Johannes Bruining -- 12.1. Introduction -- 12.2. Density-driven flow in heterogeneous media -- 12.2.1. Ph
Contents note continued: 12.2.2.4. Heterogeneity index, IH -- 12.2.3. Generation of stochastic random fields -- 12.2.4. Results and discussion -- 12.2.4.1. Homogeneous porous media -- 12.2.4.2. Effect of heterogeneity -- 12.3. Analytical model for density-driven natural convection flow -- 12.3.1. Koval theory for miscible displacement -- 12.3.2. Formulation and governing equations -- 12.3.3. Dimensionless form of the equations -- 12.3.4. Solution of Equation (12.39) -- 12.3.5.Comparison of numerical and analytical solutions -- 12.4. Summary -- 12.5. Appendix 12a. Numerical solution of the eq
Contents note continued: 13.2.3. Isochoric and adiabatic compressed air storage -- simplified analytical solution for ideal gas and neglecting some losses -- 13.2.4. Isothermal compression and isobaric compressed air storage with isothermal expansion and heat transfer -- 13.3. CAES-cycles -- operated and planned -- 13.3.1. Diabatic concept -- 13.3.2. Adiabatic concept -- 13.3.3. Isochoric compressed air storage with variable pressure -- 13.3.4. Isobaric compressed air storage with variable volume -- 13.4. Summary -- 14. Simulation of an isobaric adiabatic compressed air energy storage combin
Contents note continued: 14.2.1.3. Validation of the cavern models -- 14.2.2. Thermal energy storage -- 14.2.2.1.0-dimensional thermal energy storage -- 14.2.2.2.1-dimensional solid thermal energy storage -- 14.2.2.3.2-tank fluid thermal energy storage -- 14.2.2.4. Thermocline heat storage -- 14.2.3. Turbo machinery -- 14.2.3.1.Compressor -- 14.2.3.2.Combustion chamber -- 14.2.3.3. Gas turbine -- 14.2.4. Steam cycle -- 14.3. Simulation results -- 14.3.1. Heat conduction in cavern walls -- 14.3.2. Gas turbine startup -- 14.3.3. Isacoast-CC storage process -- 14.3.3.1. Heat storage during char
Contents note continued: 15.3.2. Solution framework -- 15.3.3. The momentum equations for flow in well and drift-flux model (DFM) -- 15.3.4. Numerical implementation -- 15.3.4.1. Solution of momentum equation in wellbore -- 15.3.4.2. Mass and energy flow through wellbore/reservoir interface -- 15.3.4.3. Primary variables for system with multiple non-water components -- 15.4. Example PM-CAES simulation -- 15.4.1.A note on time steps -- 15.5. Conclusions -- 16. Detailed system level simulation of compressed air energy storage / Mandhapati Raju -- 16.1. Introduction -- 16.2. Background -- 16.3.