Design, control and application of modular multilevel converters for HVDC transmission systems /

Saved in:
Bibliographic Details
Main Authors: Sharifabadi, Kamran, 1963
Corporate Authors: Wiley InterScience Online service
Group Author: Harnefors, Lennart, 1968; Nee, Hans Peter, 1963; Norrga, Staffan, 1968; Teodorescu, Remus
Published: John Wiley & Sons, Inc.,
Publisher Address: Chichester, West Sussex, United Kingdom :
Publication Dates: 2016.
Literature type: eBook
Language: English
Subjects:
Online Access: http://onlinelibrary.wiley.com/book/10.1002/9781118851555
Carrier Form: 1 online resource
Bibliography: Includes bibliographical references and index.
ISBN: 9781118851524 (pdf)
1118851528 (pdf)
9781118851548 (electronic bk.)
1118851544 (electronic bk.)
9781118851555
1118851552
Index Number: TK2796
CLC: TM46
Contents: Cover; Title Page; Copyright; Contents; Preface; Acknowledgements; About the Companion Website; Nomenclature; Introduction; Chapter 1 Introduction to Modular Multilevel Converters; 1.1 Introduction; 1.2 The Two-Level Voltage Source Converter; 1.2.1 Topology and Basic Function; 1.2.2 Steady-State Operation; 1.3 Benefits of Multilevel Converters; 1.4 Early Multilevel Converters; 1.4.1 Diode Clamped Converters; 1.4.2 Flying Capacitor Converters; 1.5 Cascaded Multilevel Converters; 1.5.1 Submodules and Submodule Strings; 1.5.2 Modular Multilevel Converter with Half-Bridge Submodules
1.5.3 Other Cascaded Converter Topologies1.6 Summary; References; Chapter 2 Main-Circuit Design; 2.1 Introduction; 2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications; 2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors; 2.2.2 Basic Conduction Properties of Power Semiconductor Devices; 2.2.3 P-N Junctions for Blocking; 2.2.4 Conduction Properties and the Need for Carrier Injection; 2.2.5 Switching Properties; 2.2.6 Packaging; 2.2.7 Reliability of Power Semiconductor Devices; 2.2.8 Silicon Carbide Power Devices
2.3 Medium-Voltage Capacitors for Submodules2.3.1 Design and Fabrication; 2.3.2 Self-Healing and Reliability; 2.4 Arm Inductors; 2.5 Submodule Configurations; 2.5.1 Existing Half-Bridge Submodule Realizations; 2.5.2 Clamped Single-Submodule; 2.5.3 Clamped Double-Submodule; 2.5.4 Unipolar-Voltage Full-Bridge Submodule; 2.5.5 Five-Level Cross-Connected Submodule; 2.5.6 Three-Level Cross-Connected Submodule; 2.5.7 Double Submodule; 2.5.8 Semi-Full-Bridge Submodule; 2.5.9 Soft-Switching Submodules; 2.6 Choice of Main-Circuit Parameters; 2.6.1 Main Input Data
2.6.2 Choice of Power Semiconductor Devices2.6.3 Choice of the Number of Submodules; 2.6.4 Choice of Submodule Capacitance; 2.6.5 Choice of Arm Inductance; 2.7 Handling of Redundant and Faulty Submodules; 2.7.1 Method 1; 2.7.2 Method 2; 2.7.3 Comparison of Method 1 and Method 2; 2.7.4 Handling of Redundancy Using IGBT Stacks; 2.8 Auxiliary Power Supplies for Submodules; 2.8.1 Using the Submodule Capacitor as Power Source; 2.8.2 Power Supplies with High-Voltage Inputs; 2.8.3 The Tapped-Inductor Buck Converter; 2.9 Start-Up Procedures; 2.10 Summary; References; Chapter 3 Dynamics and Control
3.1 Introduction3.2 Fundamentals; 3.2.1 Arms; 3.2.2 Submodules; 3.2.3 AC Bus; 3.2.4 DC Bus; 3.2.5 Currents; 3.3 Converter Operating Principle and Averaged Dynamic Model; 3.3.1 Dynamic Relations for the Currents; 3.3.2 Selection of the Mean Sum Capacitor Voltages; 3.3.3 Averaging Principle; 3.3.4 Ideal Selection of the Insertion Indices; 3.3.5 Sum-Capacitor-Voltage Ripples; 3.3.6 Maximum Output Voltage; 3.3.7 DC-Bus Dynamics; 3.3.8 Time Delays; 3.4 Per-Phase Output-Current Control; 3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller