Sustainable energy from salinity gradients /

Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Effic...

Full description

Saved in:
Bibliographic Details
Corporate Authors: Elsevier Science & Technology.
Group Author: Cipollina, Ana; Micale, Giorgio
Published: Elsevier/Woodhead Publishing,
Publisher Address: Amsterdam :
Publication Dates: [2016]
©2016
Literature type: eBook
Language: English
Series: Woodhead Publishing series in energy ; number 95
Subjects:
Online Access: http://www.sciencedirect.com/science/book/9780081003121
Summary: Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. i A Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. i A Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis.i A .
Carrier Form: 1 online resource (362 pages).
Bibliography: Includes bibliographical references and index.
ISBN: 9780081003237
0081003234
Index Number: TJ808
CLC: TK01
Contents: Front Cover; Sustainable Energy from Salinity Gradients; Copyright; Contents; List of contributors; Preface; Woodhead Publishing Series in Energy; Chapter 1: Salinity gradient energy; 1.1. Some history on salinity gradient energy technologies; 1.2. Theoretical analysis of world potentials for SGE technologies; 1.3. Classification of SGP technologies; 1.4. Outline of chapters; References; Chapter 2: Pressure retarded osmosis: Fundamentals; 2.1. About the osmotic energy; 2.2. Pressure retarded osmosis process; 2.2.1. Different osmotic processes; 2.2.2. Power generation by the PRO process
2.2.3. Mass transfer across the PRO membranes2.2.4. Thermodynamic limits of the PRO process; 2.3. Membranes for PRO; 2.3.1. Fabrication methods for polymeric PRO membranes; 2.3.2. Early PRO studies using reverse osmosis (RO)/nanofiltration (NF) membranes; 2.3.3. PRO performances of the conventional FO membranes; 2.3.4. TFC-PRO flat-sheet membranes; 2.3.5. PRO hollow fibre membranes; 2.3.5.1. Integrally skinned PRO hollow fibre membranes; 2.3.5.2. TFC-PRO hollow fibre membranes; 2.3.6. Laboratory characterizations of the PRO membranes
2.4. Fouling in the PRO process and antifouling PRO membranes2.4.1. Fouling and cleaning in the PRO processes; 2.4.2. Antifouling membranes; 2.5. R&D perspectives; 2.5.1. Membranes; 2.5.2. Spacer design; 2.5.3. Antifouling strategies; 2.5.4. Pilot studies employing realistic feed and high salinity sources; Acknowledgements; References; Chapter 3: Pressure retarded osmosis: Applications; 3.1. Introduction; 3.2. Typical layout of PRO plants; 3.2.1. PRO facility components; 3.3. Feed possibilities of PRO units; 3.3.1. River water-seawater; 3.3.2. Freshwater-RO brine
3.3.3. Closed-loop PRO options3.4. Core aspects in PRO systems; 3.4.1. PRO membranes and membrane modules; 3.4.2. Process performance parameters; 3.5. Practical experiences in PRO piloting; 3.6. Perspectives for R&D and industrial development; References; Chapter 4: Reverse electrodialysis; 4.1. Introduction; 4.1.1. The early years, 1890-2000; 4.1.2. The modern time, 2000-2015; 4.1.2.1. Upscaling the RED process; 4.1.3. New RED-related applications; 4.1.3.1. Capacitive mixing; 4.1.3.2. Integrated systems; 4.1.3.3. Integrated closed systems; 4.1.3.4. Hybrid systems; 4.1.3.5. Nano systems
4.2. Membranes for RED4.2.1. Principle; 4.2.2. Classification; 4.2.2.1. CEM, AEM, bipolar, and mosaic; 4.2.2.2. Strong and weak exchanging groups; 4.2.2.3. Monovalent selective membranes; 4.2.2.4. Special outer membranes; 4.2.2.5. Profiled or corrugated membranes; 4.2.3. Donnan exclusion; 4.2.4. The membrane-solution interface phenomena; 4.2.5. Membrane properties and characterization; 4.2.5.1. Ion exchange capacity; 4.2.5.2. Swelling degree; 4.2.5.3. The electromotive force and permselectivity; 4.2.5.4. Membrane resistance; 4.2.6. Multivalent ions; 4.3. The RED process