Concepts and models for drug permeability studies : cell and tissue based In vitro culture models /

Saved in:
Bibliographic Details
Corporate Authors: Elsevier Science & Technology
Group Author: Sarmento, Bruno
Published: Elsevier Ltd.,
Publisher Address: Amsterdam :
Publication Dates: 2016.
©2016
Literature type: eBook
Language: English
Series: Woodhead Publishing series in biomedicine ; number 79
Subjects:
Online Access: http://www.sciencedirect.com/science/book/9780081000946
Carrier Form: 1 online resource.
Bibliography: Includes bibliographical references and index.
ISBN: 9780081001141
0081001142
Index Number: RM301
CLC: R917
Contents: Front Cover; Related titles; Concepts and Models for Drug Permeability Studies; Copyright; Contents; List of contributors; List of figures; List of tables; 1 -- Introduction; 1.1 Introduction; References; 2 -- Importance and applications of cell- and tissue-based in vitro models for drug permeability screening in early stages o ...; 2.1 Introduction; 2.2 General considerations; 2.3 Drug transport; 2.3.1 Transport mechanisms; 2.4 Permeability-absorption models; 2.4.1 Physicochemical methods; 2.4.1.1 Physicochemical factors; 2.4.1.2 Immobilized artificial membrane chromatography
2.4.1.3 Parallel artificial membrane permeability assay2.4.2 In vitro cell and tissue methods; 2.4.2.1 Cell-based methods; 2.4.2.2 Tissue-based methods; Diffusion chambers; Franz cells; Everted sacs; Isolated membrane vesicles; 2.5 Methods for permeability calculation; 2.6 Standardization of protocols for in vitro methods; 2.7 The "three Rs" principle; 2.8 Biosecurity systems; References; 3.1 -- Cell-based in vitro models for buccal permeability studies; 3.1.1 Introduction; 3.1.2 Physiology of the buccal mucosa; 3.1.3 Different in vitro models; 3.1.3.1 Hamster cheek pouch cells
3.1.3.2 TR146 cell line3.1.3.2.1 Protocol; Cell culture conditions; Permeability studies; 3.1.3.3 Human oral keratinocytes; 3.1.3.3.1 Protocol; Oral keratinocyte culture conditions; Culturing on dead de-epidermized dermis (DDED); Permeability studies; 3.1.3.4 MatTek EpiOral ; 3.1.3.4.1 Protocol; Cell culture conditions; Permeability studies; 3.1.4 Conclusions; References; 3.2 -- Cell-based in vitro models for gastric permeability studies; 3.2.1 The stomach as a natural barrier to absorption; 3.2.2 Gastric drug delivery; 3.2.2.1 Molecular absorption in the stomach
3.2.2.2 Physicochemical factors mediating stomach absorptive permeability3.2.3 Cellularized models of gastric permeability; 3.2.3.1 Protocol for establishing cellularized artificial models of the gastric wall; 3.2.4 Conclusions; Acknowledgments; References; 3.3 -- Cell-based in vitro models for intestinal permeability studies; 3.3.1 Anatomy and physiology of human small intestine; 3.3.1.1 Stromal-epithelial cross-talk; 3.3.2 Mechanisms of transport; 3.3.3 Intestinal barriers; 3.3.4 Intestinal in vitro models; 3.3.4.1 Caco-2 model; 3.3.4.1.1 Accelerated Caco-2 models
3.3.4.1.2 Alternatives to the Caco-2 model3.3.4.2 Caco-2/HT29-MTX model; 3.3.4.3 Caco-2/Raji B model; 3.3.4.4 Caco-2/HT29-MTX/Raji B; 3.3.4.5 Novel 3D in vitro models; 3.3.5 Validation studies; 3.3.6 Conclusions; References; 3.4 -- Cell-based in vitro models for nasal permeability studies; 3.4.1 Introduction; 3.4.2 Nasal primary cell culture models; 3.4.2.1 Sampling approaches and procedures; 3.4.2.2 HNE cell preparation and culture initiation; 3.4.3 Immortalized nasal cell lines; 3.4.3.1 RMPI 2650 cell line; 3.4.3.2 BT cell line; 3.4.3.3 Human lung carcinoma cell line